Printed Optics

Project Members

Karl D. D. Willis (Disney Research Pittsburgh)
Eric Brockmeyer (Disney Research Pittsburgh)
Scott Hudson (Carnegie Mellon University)
Ivan Poupyrev (Disney Research Pittsburgh)


Printed Optics is a new approach to creating custom optical elements for interactive devices using 3D printing. Printed Optics enable sensing, display, and illumination elements to be directly embedded in the body of an interactive device. Using these elements, unique display surfaces, novel illumination techniques, custom optical sensors, and robust embedded components can be digitally fabricated for rapid, high fidelity, customized interactive devices.

Printed Optics is part of our long-term vision for the production of interactive devices that are 3D printed in their entirety. Future devices will be fabricated on demand with user-specific form and functionality. Printed Optics explores the possibilities for this vision afforded by today’s 3D printing technology.


Printed Optics Chess Pieces

Chess pieces with embedded light pipes display content piped from an interactive tabletop. Contextual information, such as chess piece location and suggested moves, can be displayed on each individual piece.

Printed Optics Chess Illustration

3D printed light pipes can create display areas on physical objects, by guiding light from regular screens.

3D Printed Light Pipes

Light pipes consist of a rigid transparent core, a soft cladding, and a rigid outer casing, 3D printed in a single model.

3D Printed Light Bulbs

3D printed light bulbs enable many exciting new form factors.

3D Printed Light Bulb

Internal bubbles can be accurately placed for unique light bulb designs.

3D Printed Toy Character

A toy character has an embedded heart shape made from a series of internal bubbles.

3D Printed Mobile Display

A mobile 3D display created by projecting on internal bubbles within a 3D printed model.

3D Printed Touch Sensor

Touch can be sensed with components entirely embedded in a 3D printed enclosure.

3D Printed Lens

An LED embedded in a 3D printed lens to focus light.

3D Printed Character

A 3D printed mobile projector accessory with embedded light pipes. Projected imagery is mapped onto the character’s eyes. The character responds to user interaction such as sound or physical movement.

3D Printed Character

A grid of 3D printed light pipes are embedded inside a character, guiding light between it’s feet and eyes.

3D Printed Device Concept

We envision future interactive devices that are 3D printed from individual layers (left) rather than assembled from individual parts (right).

3D Printed Light Bulb

Complex shapes can be designed and used with energy efficient LED light sources.

3D Printed Light Bulb

Light pipes inside the bulbs can direct light and create internal patterns.

3D Printed Character

When illuminated the embedded heart shape glows with a heartbeat-like rhythm.

3D Printed Sensors

Interface elements such as buttons, dials, sliders, and accelerometers can be 3D printed.

3D Printed Touch Sensor

A four-way button with sensors embedded inside the 3D print.

3D Printed Sensor Reflector

A 3D printed prism is used to reflect light in four directions for a four-way button.


Printed Optics- 3D Printing of Embedded Optical Elements for Interactive Devices-Thumbnail

Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices
October 7, 2012
ACM Symposium on User Interface Software and Technology (ACM UIST) 2012
Paper File [pdf, 1.47 MB]

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.