Designing Structurally-Sound Ornamental Curve Networks

Authors

Jonas Zehnder (Disney Research Zurich)
Stelian Coros (Carnegie Mellon University)
Bernhard Thomaszewski (Disney Research Zurich)

ACM SIGGRAPH 2016

July 24, 2016

Designing Structurally-Sound Ornamental Curve Networks-Image

We present a computational tool for designing ornamental curve networks—structurally-sound physical surfaces with user-controlled aesthetics. In contrast to approaches that leverage texture synthesis for creating decorative surface patterns, our method relies on user-defined spline curves as central design primitives. More specifically, we build on the physically-inspired metaphor of an embedded elastic curve that can move on a smooth surface, deform, and connect with other curves. We formalize this idea as a globally coupled energy-minimization problem, discretized with piece-wise linear curves that are optimized in the parametric space of a smooth surface. Building on this technical core, we propose a set of interactive design and editing tools that we demonstrate on manually-created layouts and semi-automated deformable packings. In order to prevent excessive compliance, we furthermore propose a structural analysis tool that uses eigenanalysis to identify potentially large deformations between geodesically-close curves and guide the user in strengthening the corresponding regions. We used our approach to create a variety of designs in simulation, validated with a set of 3D-printed physical prototypes.

Download File "Designing Structurally-Sound Ornamental Curve Networks-Paper"
[pdf, 19.39 MB]

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.