Disney Research


Progressive Virtual Beam Lights-Image

A recent technique that forms virtual ray lights (VRLs) from path segments in media, reduces the artifacts common to VPL approaches in participating media, however, distracting singularities still remain. We present Virtual Beam Lights (VBLs), a progressive many-lights algorithm for rendering complex indirect transport paths in, from, and to media. VBLs are efficient and can handle heterogeneous media, anisotropic scattering, and moderately glossy surfaces, while provably converging to ground truth. We inflate ray lights into beam lights with finite thicknesses to eliminate the remaining singularities. Furthermore, we devise several practical schemes for importance sampling the various transport contributions between camera rays, light rays, and surface points. VBLs produce artifact-free images faster than VRLs, especially when glossy surfaces and/or anisotropic phase functions are present. Lastly, we employ a progressive thickness reduction scheme for VBLs in order to render results that converge to ground truth.

Copyright Notice

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.